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Abstract—Determining the molecular Hamiltonian proves to
be an essential tool in understanding a molecule’s properties,
including energy changes in reactions and molecular stability.
Traditional self-consistent field methods such as Hartree-Fock
have been long-standing approaches for approximating the
Schrodinger equation to help find molecular Hamiltonians.
However, their limitation in handling perturbation energies has
led to the development of Post-Hartree-Fock methods, including
the Meoller—Plesset perturbation theory. This research aims to
introduce a novel method for the analysis of conformational
isomers of acyclic alkanes utilizing the Maoller—Plesset
perturbation theory. Specifically, the geometric and
Hamiltonian characteristics of conformers are analyzed.
Conformers are computationally generated, and their molecular
Hamiltonians are evaluated. The method uses a single molecular
structure as input and combines Monte Carlo simulations with
classical geometric clustering to generate possible conformers.
Ethane, propane and isobutane are used for the analysis of this
methodology. The molecular geometries are evaluated using the
Computational Chemistry Comparison and Benchmark
Database (CCCBDB) with the MP2/cc-pVDZ basis set. Results
from this research showcase that narrower angle bounds lead to
more plausible and stable structures, primarily indicated by the
low variability in energy values.

Keywords—Hartree-Fock, Post-Hartree-Fock, perturbation
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I. INTRODUCTION

Conformational isomerism is a crucial property of certain
organic molecules that has profound impacts across many
different fields. For example, different conformers can affect
drug discovery processes, molecule binding properties, and
reaction pathways for both medical and biological
purposes [1]. Determination of conformational isomers can
advance treatment modalities for cancer since the positioning
of conjugate groups plays an important role in cancer treating
drugs. For instance, the positioning of glucose-platinum has
been shown to determine the effectiveness of the C6-glucose-
platinum isomer to target cancer cells [2]. Additionally, the
identification of conformational isomers is essential for
biomolecular protein folding and unfolding, which has
potential in disease diagnosis and treatment. However, a
significant challenge lies within the rapid interconversions of
conformational isomers, which hampers their analysis and
identification [3]. This issue is also evident in other
identification methods such as nuclear magnetic resonance,
which also lack the ability to identify individual room-
temperature  isomers due to their tendency for
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interconversions [4]. With the importance of conformational
analysis for numerous practical applications and the current
constraints for existing methods, this research aims to provide
a novel computational method for finding new
conformational isomers of a molecule while also analyzing
their molecular energies i.e. the Hamiltonians.

II. BACKGROUND

Molecular mechanics have been a prominent method for
the analysis and minimization of molecular energies. There
are a few molecules such as cyclohexane whose steric
energies have been well analyzed and pathways between
different conformers (chair, half-chair, twist-boat, and boat)
have been described [4]. To describe the conformer that a
molecule takes, a typical choice is to observe the torsional
angles between bonds. Torsional angles provide a detailed 3D
configuration of a specific molecule, but quickly become
impractical for larger molecule sizes [1].

Furthermore, approaches using force fields have also been
utilized for steric energy analysis of organic molecules. These
force fields include Molecular Mechanics 2, Molecular
Mechanics 3, and Merck Molecular Force Field [5, 6]. These
molecular force fields provide precise classical
approximations of the dynamics of quantum mechanical
systems using a combination of bond lengths, bond angles,
bond torsions and electron repulsions. Methods for analyzing
these force field factors typically involve stochastic or Monte
Carlo analysis, and random sampling methods to approximate
solutions [7, 8]. Prior research has generalized the trends in
steric energies found through these force fields into geometric
transformations [9].

In addition to stochastic methods, more recent research has
revealed how different standard clustering algorithms can
identify conformational isomerism in molecules. For
example, the k-means and affinity propagation methods have
been used to identify cluster centers in molecules. However,
they hold their own disadvantages, ranging from being too
sensitive to noise or being too computationally expensive [1].
Research by Nwerem in [10] used principal component
analysis and k-means to create a computational system to
identify common conformer structures, but at a loss of
accuracy in higher dimensionality situations. Furthermore,
new research has shown the use of an improved Fast Search
and Find of Density Peaks clustering algorithm to observe
conformers of Sildenafil (hypertension medication) and
create energy comparisons [1]. Deep learning neural
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networks have also been applied to improve molecular
property predictions, thus increasing the accuracy of drug
development models by including 3D information for many
conformers [11].

Despite the aforementioned conformer analysis techniques,
finding stable conformers with increased molecule size
remains unaddressed. This research attempts to address this
issue for acyclic alkanes using a combination of classical
geometric clustering and Monte Carlo algorithms. Research
by Ghamari et al. and Sukurma et al. has shown successful
use cases of stochastic quantum methods for molecular
energy evaluation and transitions [12, 13]. Rather than
addressing the issue of finding stable conformers using
stochastic quantum methods, this research focuses on using a
novel Monte Carlo based approach to classically generate
molecules and evaluate their energy characteristics.

III. METHODOLOGY

This research evaluates the molecular Hamiltonian, an
operator which when applied to a molecule, provides the total
energy of its system as a sum of the potential and kinetic
energies. Solving the Schrodinger Eq. (1) provides the value
of this Hamiltonian:

H|P) = €|P) ey

While solving the Schrodinger equation is well-defined for
single-electron systems such as hydrogen, multi-electron
systems require approximations of their Hamiltonian
solutions. Several methods have been proposed to
approximate the value of a multi-electron system’s
Hamiltonian, several of which involve an iterative process for
calculating a Hamiltonian. These methods are known as Self-
Consistent Field (SCF) methods.

An extremely prevalent SCF method is The Hartree-Fock
method, which performs Hamiltonian calculations by
iteratively updating the orbitals of a molecule until a
convergence is found in its density matrix [14]. The density
matrix of the molecule is representative of all the wave
functions that are present in a molecule, and its elements
provide a probability for quantum elements such as electrons
in a specific quantum state.

The Moller-Plesset Perturbation Theory (Eq. (2)), a post-
Hartree-Fock method, extends the standard Hartree-Fock
method by providing a perturbation factor to account for
electron correlation energy. As a result, more accurate energy
approximations can be made using the equation below:

H=Hy+ AV (2)

In this research, a second order Mpgller-Plesset
Perturbation Theory (MP2) was used to evaluate molecular
energies and geometries. To computationally find the MP2
energy (in units of Hartrees) of a molecule, Python’s PySCF
library was used and molecular orbitals were created under a
standard Correlation-Consistent Polarized Valence Double
Zeta (cc-pVDZ) basis set from the Computational Chemistry
Comparison and Benchmark Database (CCCBDB) [15, 16].

CCCBDB provides a systematic organization of the
different evaluations of molecular geometries, energies (both
in terms of electronic states as well as rotational and
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vibrational states), and thermochemical properties. In
particular, the CCCBDB contains calculated geometries for
several molecules evaluated using a variety of methods and
standard basis sets [16]. The CCCBDB was used to find the
geometries of the ground states of molecules.

We adapted the following steps for the search of
conformers of a given acyclic alkane. First, an alkane’s
calculated ground state geometry was found using the
CCCBDB evaluated under the cc-pVDZ basis set. This
ground state conformer geometry provides a starting point for
generating new conformers. The geometry found on
CCCBDB was set in a 3D cartesian coordinate space. Second,
a Monte Carlo method was used to create several random
conformers of the alkane and subsequently analyze their MP2
energies.

In particular, the first carbon atom for a given alkane’s
ground conformer geometry, labeled “C1” by the CCCBDB,
was fixed in the 3D coordinate space. Then, the given alkane
was considered as an undirected mathematical graph with
vertices defined by the atoms and edges defined by bonds.
More specifically, two atoms were adjacent in the graph of
the alkane if they share a bond. The adjacency matrix defined
by atomic bonding was also found on CCCBDB. Note that in
this methodology all alkanes are acyclic. Since any connected,
acyclic graph is a tree, the given alkanes can also be
considered as tree graphs.

Given this graphical representation of the alkane’s ground
conformer, a Breadth-First Search (BFS) (see Algorithm 1
below) was performed starting with the root vertex as the
fixed carbon atom (C1). Then the order of traversal by BFS
through the alkane graph was stored into an array.

Algorithm 1. Breadth-First Search (BFS)
Input: Graph G, root r.

1 for each vertex v € G.Vertices
2 v.visited = False
3 Q=9
4 Enqueue(Q,7)
5 r.visited = True
6
7
8

traversalOrder =[]

while Q # @:
u = Dequeue(Q)
9 Append(traversalOrder, u)
10 for each vertex w € u.Neighbors
11 if w.visited = False
12 Enqueue(Q, w)
13 w.visited = False

14 return traversalOrder

Note that BFS traverses through a graph in a level-by-level
planar manner starting with the root vertex. This means that
at any point in the BFS traversal, the current vertex is adjacent
to exactly one of the previously traversed vertices. Then the
“parent” vertex is defined as this previously traversed vertex
which is adjacent to the current vertex. All vertices except the
root vertex will have a parent vertex. For a tree graph, if every
vertex is appended to its parent vertex starting from the root,
the tree graph can be reconstructed if the appending process
follows the order returned by BFS traversal. This means the
graph representation of the given acyclic alkane can be
reconstructed with the BFS traversal order starting from the
root vertex, which was the fixed carbon atom.

Note that any two conformers of the given alkane will have
the same undirected graphical representation. This is because
different conformers will retain their atomic bonding patterns,
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regardless of what configuration they are in. Given this key
insight, the BFS traversal order could provide a method for
the generation of random conformers of the alkane.
Specifically, a new conformer can be generated while
reconstructing its graph by fixing each bond length in the
given alkane and randomly varying the azimuthal and polar
angles of each atom around its parent atom. The specific
azimuthal angles are also set to have a lower bound of 0
radians, and three upper bound test cases of /4, /8, and
1/16 radians. The corresponding polar angles for these three
test cases are bounded above by m/2, /4, and /8 radians
respectively. The process by which an atom is appended to its
parent in random position within a given angle bound is
shown below in Algorithm 2.

Algorithm 2. Appending an atom around its parent

Input:

Angle bound, ¥

Parent atom coordinates in ground conformer, (Xground> Yground Zground)
Parent atom coordinates in new conformer, (Xpew, Ynews Znew)

Current atom coordinates in ground conformer: (a, b, ¢)

. 2 2 2
1 radius = \/(a - xground) + (b - Yground) + (C - Zground)
_ C=Zground
o= acos( radius )
¢ = atan2(b — Yground) @ — Xground)

6’ « random number between —% and %

¢' « random number between —1p and
Ohew = max (0, min(6 + 6',m))

Pnew = (¢ + @' +2m)% 21

Ax =1 - sin(Bhew) * COS(Prew)

Ay =1 - sin(fhew) * €0S (Pnew)

Az =1 cos(Opew)

return (Xpew + AX, Ynew + AY, Znew + AZ)

_—— 0 0 J3 W B W N

-0

Once this appending procedure is complete for all atoms in
the BFS traversal order, a random conformer of the given
acyclic alkane has been created. This trial conformer
generation process was repeated 1000 times, creating 1000
possible configurations for the alkane at random azimuthal
and polar angles between 0 radians and their respective angle
bounds. The choice of 1000 iterations was subjective and was
made in order to obtain a sufficient number of conformers to
observe a trend in the molecular energy distribution without
the requirement of extensive computational power and time.
Additionally, it was chosen to vary polar and azimuthal
angles to observe patterns in the energy of a conformer with
varying atomic positions. Furthermore, the MP2 energies for
each trial conformer were also recorded, forming a
distribution of energies for the alkane at each angle bound.

Four statistical parameters of each distribution, namely
median, Interquartile Range (IQR), skewness, and kurtosis
were then recorded. The process of creating the distribution
and finding the statistical parameters was performed three
times with the aforementioned angle bounds for the azimuthal
and polar angles.

With the three different distributions of conformers for the
given acyclic alkane (one for each angle bound test case), a
classical geometric clustering was used to compare different
geometric configurations with each other. More specifically,
the centroids for the CH, CH», and CH3 groups (if present) in
each conformer were calculated and it was observed how the
positions of these centroids varied across the distribution of
conformers. The collection of each centroid’s location across
the entire distribution creates an observable cluster when
overlayed on top of the ground conformer. The proposed
process is shown in Fig. 1 and was implemented using Python

3 and the following libraries: PySCF, NumPy, and
Matplotlib [17-19]. Results were analyzed using the acyclic
alkanes ethane (C,Hs), propane (C3Hs), and isobutane (C4Hjo).
Note, however, that this process can work for acyclic alkanes
of any given size provided that the computational resources
are present.
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Fig. 1. Methodology: Monte Carlo with classical geometric clustering.
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IV. RESULTS

The following Figs. 2(a) and (b), show the ground
conformer and median MP2 energy conformers for ethane
created from the Monte Carlo trial conformer generation.

-10

o Hydrogen
e carbon

e Hydrogen
e carbon

(®)
Fig. 2. (a) Ethane ground conformer; (b) Ethane median energy conformer
(Top Left: m/8 polar angle bound, Top Right: m/4 polar angle bound,
Bottom: /2 polar angle bound).

The following Figs. 3(a) and (b) show the ground
conformer and median MP2 energy conformers for propane
created from the Monte Carlo trial conformer generation.
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(b)
Fig. 3. (a) Propane ground conformer; (b) Propane median energy conformer
(Top Left: /8 polar angle bound, Top Right: m/4 polar angle bound,
Bottom: /2 polar angle bound).

The following Figs. 4(a) and (b) show the ground
conformer and median MP2 energy conformers for isobutane
created from the Monte Carlo trial conformer generation.

®  Hydrogen
e Carbon

15

(b)
Fig. 4. (a) Isobutane ground conformer; (b) Isobutane median energy
conformer (Top Left: /8 polar angle bound, Top Right: /4 polar angle
bound, Bottom: 1/2 polar angle bound).

From the Monte Carlo methodology, statistical parameters
from the trial conformer MP2 energy distributions are shown
in Table 1. Molecular energy is in units of Hartrees.

Table 1. Distribution statistics for conformer MP2 energies

Conformer Azimuthal Angle Bound PolarAngle Bound Median Energy (Hartrees) IQR Skewness Kurtosis
Ethane n/4 /2 —79.1140 0.3182 6.4239 54.4983
Ethane m/8 /4 —79.4074 0.0880 0.6810 0.4500
Ethane n/16 /8 —79.5061 0.0222 0.6631 0.2458
Propane /4 /2 —117.7483 0.8028 22.5781 595.5804
Propane m/8 /4 —118.4544 0.1457 4.1881 40.6724
Propane n/16 /8 —118.6553 0.0348 0.7257 0.5383

Isobutane /4 /2 —155.9988 2.5213 7.6761 74.6403
Isobutane m/8 /4 —157.4520 0.3948 9.1102 127.9822
Isobutane m/16 /8 —157.8050 0.0594 22178 8.4754

Next, the classical geometric clustering of centroids from
CH, CH, and CH3; groups for ethane, propane, and isobutane
are shown in Figs. 5-7. Note that ethane does not contain a
CH or CH; group and propane does not contain a CH group.
In all the following figures, purple points are for CH group
clusters, orange points are used for CH, group clusters, and
green points are used for CH3 group clusters.

Below in Figs. 8-10 are box plots showcasing the different
distributions of energies for ethane, propane, and isobutane
under different angle bounds. Note that the box plots (in units
of Hartrees) are not all the same scale for visual purposes.

We start by observing four statistical parameters of
conformer energy distributions created by the Monte Carlo
methodology, as reported in Table 1. It should be observed
that the median MP2 energy increases in magnitude from
larger to narrower angle bounds (from w/2 to m/8).
Furthermore, narrower bounds such as 7/4 and /8 have much
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smaller interquartile ranges than the /2 bounds.

Note that all distributions have a positive skew which
decreases as the angle bound changes from n/2 to n/8. This
positive skew indicates that the Monte Carlo method is
producing outlier conformers that are physically improbable.
Examples of such outliers can be seen in Figs. 8—10. The
positive kurtosis values and leptokurtic behavior of each
distribution indicates that outliers have a high deviation from
the median. This positive kurtosis allows for an easier
separation of physically improbable trial conformers.
Additionally, it is evident from the roughly symmetric box
plots in Figs. 8—10 that as the angle bounds approaches lower
values (i.e. n/8), the distribution of energies tends toward a
normal model. As the angle bound increases to higher values
such as 7/8 and m/4, it can be seen that a larger number of
outliers are generated, thus skewing the distribution toward
higher energy values.
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Fig. 5. Ethane centroid clusters (Top Left: /8 polar angle bound, Top
Right: /4 polar angle bound, Bottom: /2 polar angle bound).

Fig. 6. Propane centroid clusters (Top Left: /8 polar angle bound, Top
Right: /4 polar angle bound, Bottom: /2 polar angle bound).

Fig. 7. Isobutane centroid clusters (Top Left: /8 polar angle bound, Top
Right: /4 polar angle bound, Bottom: /2 polar angle bound).

It should also be observed that the CH» group (orange) in
propane has an electron cloud that gets noticeably
compressed between the surrounding CH; groups (green).
This can be seen by the decreased width of the green centroid
cluster compared to the orange and purple clusters.
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Fig. 8. Ethane MP2 energy distribution box plots (From left to right: /8
polar angle bound, /4 polar angle bound, /2 polar angle bound).
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Fig. 9. Propane MP2 energy distribution box plots (From left to right: /2
polar angle bound, /4 polar angle bound, /8 polar angle bound).
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Fig. 10. Isobutane MP2 energy distribution box plots (From left to right:
1 /2 polar angle bound, 7 /4 polar angle bound, /8 polar angle bound).

V. ANALYSIS AND DISCUSSION

As seen in the results, when transitioning to higher angle
bounds the number of outliers tends to increase. This likely
results from the overlapping of electron clouds between the
CH, CH; and CH3; groups of the given molecule. As the angle
bounds increase, the range for the random azimuthal and
polar angles also increases, meaning bonds gain more
rotational freedom. With larger amounts of rotational
freedom, the electron clouds of the structural units have a
higher chance of overlapping, leading to higher electron-
electron repulsion energies. This is reflected in the form of
more positive-valued Hartree energies which are seen as
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outliers in the distribution as seen in Figs. 8—10. Conversely,
when the angle bounds are decreased, the structural units lose
their rotational freedom and possess fewer electron-electron
repulsions. This is observed as more negative-valued Hartree
energies, resulting in an increase in the magnitude of the
median energies (see Table 1).

Results from the classical geometric clustering algorithm
around the CH, CH; and CHj3 groups revealed trends in the
overall geometric tendency for ethane, propane, and
isobutane (shown in Figs. 5-7). The similarity of new trial
conformers with the ground conformer indicates that ethane,
propane, and isobutane lack a wide range of stable
conformers. This implies that the structure of each conformer
is largely dictated by the placement of hydrogen atoms
around each CH, CH», and CH; group as the underlying
carbon atoms remain largely fixed. In ethane, as seen in Fig. 5,
the lack of centroids between the top and bottom CH3 centroid
clusters suggests that the most stable conformers have
hydrogen atoms that tend to stay as far apart from each other
as possible. A similar trend is noted in propane, as seen in
Fig. 6 and isobutane in Fig. 7.

VI. LIMITATIONS AND FUTURE WORK

Currently, this research presents an analysis of the energies
of conformational isomers as well as a novel method for their
generation and evaluation. However, while this method
works for acyclic alkanes, larger molecules, especially those
that are cyclic are generally much more computationally
expensive and difficult to work with. This initial
computational issue stems from the Monte Carlo
methodology, which requires the Moller-Plesset SCF
calculations to be run a substantial number of times. The latter
issue concerning the difficulty to work with cyclic molecules
is a direct result of the proposed BFS method, since it is
unable to work with cyclic graphs. As a result, the
researchers of this paper have three primary aims for future
work:

1) the extension of the current approach to observe
conformers of cyclic structures such as benzene;

2) energy analysis of conformers using alternate
methods such as embedding molecules in a force field
to vary bond lengths and bond orders;

3) the implementation of parallel computing and a

machine learning model to optimize SCF calculations.

The researchers hope to use aim 1 to enhance the utility of

the Monte Carlo-based analysis and aim 2 to provide new

methods to determine molecular energies. The purpose of aim

3 is to directly address the limitation of computational power,

which was initially observed through evaluation times when
testing ethane, propane, and isobutane, as seen in Table 2.

Table 2. Evaluation time for each conformer

Molecule Conformer Evaluation Time (minutes)

Ethane 13.99
Propane 18.80
Isobutane 29.50

When implementing the proposed methodology, the
evaluation time of propane’s Hamiltonian was measured to
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be 1.34 times the evaluation time for ethane. Isobutane also
followed a similar trend with a Hamiltonian evaluation time
1.56 times that of propane.

Given this polynomial increase in evaluation times, as
larger molecules are tested, finding alternate solutions to the
ab initio methods is pertinent. This is where aim 3 could prove
to be considerably helpful. First, running ab initio methods,
specifically Hartree-Fock and Density Functional Theory on
a parallel computing system has already been shown to
significantly speed up the SCF process [20]. Extending this
method to run higher order ab initio methods, such as MP2,
could prove to be helpful in reducing evaluation times as
larger molecules begin to get tested.

Furthermore, leveraging the use of a machine learning
model could also prove to be vital in optimizing SCF
calculations. Specifically, machine learning could be
beneficial for MP2 by generating better wavefunction
corrections and reducing the number of iteration steps when
converging to a Hamiltonian. As mentioned in the
background, machine learning has already been implemented
in the field of molecular dynamics. Particular instances
include the Fast Search and Find of Density Peaks clustering
algorithm along with deep learning prediction models.
Therefore, implementing machine learning for the generation
and evaluation of conformational isomers could prove to be a
valuable step forward in enhancing this research.

VII. CONCLUSIONS

In conclusion, a novel method for analyzing the
conformers of acyclic alkanes was successfully implemented
using the Moller-Plesset Perturbation theory, Monte Carlo
methodology, and classical geometric clustering algorithm.
Conformers were successfully generated and evaluated for
ethane, propane, and isobutane. This can potentially be
generalized for any acyclic molecule provided the necessary
computational power is present. Our results consist of a
substantial number of stable conformers, where their
structure and median energy were influenced by the position
of the CH, CH» and CH3 groups. By observing the kurtosis
values and leptokurtic behavior of each distribution, the
proposed novel method can also identify outliers, further
increasing the accuracy of conformer analysis. Future
advancements in computational efficiency and the expansion
of our approach to larger, more complex molecular systems
can also help improve the scope of our study.
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