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Abstract—Determining the molecular Hamiltonian proves to 
be an essential tool in understanding a molecule’s properties, 
including energy changes in reactions and molecular stability. 
Traditional self-consistent field methods such as Hartree-Fock 
have been long-standing approaches for approximating the 
Schrodinger equation to help find molecular Hamiltonians. 
However, their limitation in handling perturbation energies has 
led to the development of Post-Hartree-Fock methods, including 
the Møller–Plesset perturbation theory. This research aims to 
introduce a novel method for the analysis of conformational 
isomers of acyclic alkanes utilizing the Møller–Plesset 
perturbation theory. Specifically, the geometric and 
Hamiltonian characteristics of conformers are analyzed. 
Conformers are computationally generated, and their molecular 
Hamiltonians are evaluated. The method uses a single molecular 
structure as input and combines Monte Carlo simulations with 
classical geometric clustering to generate possible conformers. 
Ethane, propane and isobutane are used for the analysis of this 
methodology. The molecular geometries are evaluated using the 
Computational Chemistry Comparison and Benchmark 
Database (CCCBDB) with the MP2/cc-pVDZ basis set. Results 
from this research showcase that narrower angle bounds lead to 
more plausible and stable structures, primarily indicated by the 
low variability in energy values.  

Keywords—Hartree-Fock, Post-Hartree-Fock, perturbation 
theory, Møller-Plesset, conformational isomers, Schrödinger’s 
equation, Monte Carlo  

I. INTRODUCTION

Conformational isomerism is a crucial property of certain 
organic molecules that has profound impacts across many 
different fields. For example, different conformers can affect 
drug discovery processes, molecule binding properties, and 
reaction pathways for both medical and biological 
purposes [1]. Determination of conformational isomers can 
advance treatment modalities for cancer since the positioning 
of conjugate groups plays an important role in cancer treating 
drugs. For instance, the positioning of glucose-platinum has 
been shown to determine the effectiveness of the C6-glucose-
platinum isomer to target cancer cells [2]. Additionally, the 
identification of conformational isomers is essential for 
biomolecular protein folding and unfolding, which has 
potential in disease diagnosis and treatment. However, a 
significant challenge lies within the rapid interconversions of 
conformational isomers, which hampers their analysis and 
identification [3]. This issue is also evident in other 
identification methods such as nuclear magnetic resonance, 
which also lack the ability to identify individual room-
temperature isomers due to their tendency for 

interconversions [4]. With the importance of conformational 
analysis for numerous practical applications and the current 
constraints for existing methods, this research aims to provide 
a novel computational method for finding new 
conformational isomers of a molecule while also analyzing 
their molecular energies i.e. the Hamiltonians. 

II. BACKGROUND

Molecular mechanics have been a prominent method for 
the analysis and minimization of molecular energies. There 
are a few molecules such as cyclohexane whose steric 
energies have been well analyzed and pathways between 
different conformers (chair, half-chair, twist-boat, and boat) 
have been described [4]. To describe the conformer that a 
molecule takes, a typical choice is to observe the torsional 
angles between bonds. Torsional angles provide a detailed 3D 
configuration of a specific molecule, but quickly become 
impractical for larger molecule sizes [1].   

Furthermore, approaches using force fields have also been 
utilized for steric energy analysis of organic molecules. These 
force fields include Molecular Mechanics 2, Molecular 
Mechanics 3, and Merck Molecular Force Field [5, 6]. These 
molecular force fields provide precise classical 
approximations of the dynamics of quantum mechanical 
systems using a combination of bond lengths, bond angles, 
bond torsions and electron repulsions. Methods for analyzing 
these force field factors typically involve stochastic or Monte 
Carlo analysis, and random sampling methods to approximate 
solutions [7, 8]. Prior research has generalized the trends in 
steric energies found through these force fields into geometric 
transformations [9]. 

In addition to stochastic methods, more recent research has 
revealed how different standard clustering algorithms can 
identify conformational isomerism in molecules. For 
example, the k-means and affinity propagation methods have 
been used to identify cluster centers in molecules. However, 
they hold their own disadvantages, ranging from being too 
sensitive to noise or being too computationally expensive [1]. 
Research by Nwerem in [10] used principal component 
analysis and k-means to create a computational system to 
identify common conformer structures, but at a loss of 
accuracy in higher dimensionality situations. Furthermore, 
new research has shown the use of an improved Fast Search 
and Find of Density Peaks clustering algorithm to observe 
conformers of Sildenafil (hypertension medication) and 
create energy comparisons [1]. Deep learning neural 
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networks have also been applied to improve molecular 
property predictions, thus increasing the accuracy of drug 
development models by including 3D information for many 
conformers [11]. 

Despite the aforementioned conformer analysis techniques, 
finding stable conformers with increased molecule size 
remains unaddressed. This research attempts to address this 
issue for acyclic alkanes using a combination of classical 
geometric clustering and Monte Carlo algorithms. Research 
by Ghamari et al. and Sukurma et al. has shown successful 
use cases of stochastic quantum methods for molecular 
energy evaluation and transitions [12, 13]. Rather than 
addressing the issue of finding stable conformers using 
stochastic quantum methods, this research focuses on using a 
novel Monte Carlo based approach to classically generate 
molecules and evaluate their energy characteristics.  

III. METHODOLOGY 

This research evaluates the molecular Hamiltonian, an 
operator which when applied to a molecule, provides the total 
energy of its system as a sum of the potential and kinetic 
energies. Solving the Schrödinger Eq. (1) provides the value 
of this Hamiltonian:  ℋ|Φۧ = ℰ|Φۧ	 (1) 

While solving the Schrödinger equation is well-defined for 
single-electron systems such as hydrogen, multi-electron 
systems require approximations of their Hamiltonian 
solutions. Several methods have been proposed to 
approximate the value of a multi-electron system’s 
Hamiltonian, several of which involve an iterative process for 
calculating a Hamiltonian. These methods are known as Self-
Consistent Field (SCF) methods.  

An extremely prevalent SCF method is The Hartree-Fock 
method, which performs Hamiltonian calculations by 
iteratively updating the orbitals of a molecule until a 
convergence is found in its density matrix [14]. The density 
matrix of the molecule is representative of all the wave 
functions that are present in a molecule, and its elements 
provide a probability for quantum elements such as electrons 
in a specific quantum state.  

The Møller-Plesset Perturbation Theory (Eq. (2)), a post-
Hartree-Fock method, extends the standard Hartree-Fock 
method by providing a perturbation factor to account for 
electron correlation energy. As a result, more accurate energy 
approximations can be made using the equation below:  ℋ = ℋ଴ + 	ࣰߣ (2) 

In this research, a second order Møller-Plesset 
Perturbation Theory (MP2) was used to evaluate molecular 
energies and geometries. To computationally find the MP2 
energy (in units of Hartrees) of a molecule, Python’s PySCF 
library was used and molecular orbitals were created under a 
standard Correlation-Consistent Polarized Valence Double 
Zeta (cc-pVDZ) basis set from the Computational Chemistry 
Comparison and Benchmark Database (CCCBDB) [15, 16].  

CCCBDB provides a systematic organization of the 
different evaluations of molecular geometries, energies (both 
in terms of electronic states as well as rotational and 

vibrational states), and thermochemical properties. In 
particular, the CCCBDB contains calculated geometries for 
several molecules evaluated using a variety of methods and 
standard basis sets [16]. The CCCBDB was used to find the 
geometries of the ground states of molecules. 

We adapted the following steps for the search of 
conformers of a given acyclic alkane. First, an alkane’s 
calculated ground state geometry was found using the 
CCCBDB evaluated under the cc-pVDZ basis set. This 
ground state conformer geometry provides a starting point for 
generating new conformers. The geometry found on 
CCCBDB was set in a 3D cartesian coordinate space. Second, 
a Monte Carlo method was used to create several random 
conformers of the alkane and subsequently analyze their MP2 
energies. 

In particular, the first carbon atom for a given alkane’s 
ground conformer geometry, labeled “C1” by the CCCBDB, 
was fixed in the 3D coordinate space. Then, the given alkane 
was considered as an undirected mathematical graph with 
vertices defined by the atoms and edges defined by bonds. 
More specifically, two atoms were adjacent in the graph of 
the alkane if they share a bond. The adjacency matrix defined 
by atomic bonding was also found on CCCBDB. Note that in 
this methodology all alkanes are acyclic. Since any connected, 
acyclic graph is a tree, the given alkanes can also be 
considered as tree graphs.  

Given this graphical representation of the alkane’s ground 
conformer, a Breadth-First Search (BFS) (see Algorithm 1 
below) was performed starting with the root vertex as the 
fixed carbon atom (C1). Then the order of traversal by BFS 
through the alkane graph was stored into an array.  

 
Algorithm 1. Breadth-First Search (BFS) 
Input: Graph G, root r. 

1 for each vertex ݒ ∈  Vertices.ܩ
.ݒ											 2 visited =  ܍ܛܔ܉۴
3 ܳ = 	∅ 
4 Enqueue(ܳ,  (ݎ
.ݎ 5 visited =  ܍ܝܚ܂
6 traversalOrder = [] 
7 while ܳ ≠ ∅: 
ݑ           8 = Dequeue(ܳ) 
9           Append(traversalOrder, ݑ) 
10           for each vertex ݓ	 ∈  Neighbors.ݑ
11                      if ݓ. visited =  ܍ܛܔ܉۴
12                               Enqueue(ܳ,ݓ) 
.ݓ                               13 visited =  ܍ܛܔ܉۴
14 return traversalOrder 

 

Note that BFS traverses through a graph in a level-by-level 
planar manner starting with the root vertex. This means that 
at any point in the BFS traversal, the current vertex is adjacent 
to exactly one of the previously traversed vertices. Then the 
“parent” vertex is defined as this previously traversed vertex 
which is adjacent to the current vertex. All vertices except the 
root vertex will have a parent vertex. For a tree graph, if every 
vertex is appended to its parent vertex starting from the root, 
the tree graph can be reconstructed if the appending process 
follows the order returned by BFS traversal. This means the 
graph representation of the given acyclic alkane can be 
reconstructed with the BFS traversal order starting from the 
root vertex, which was the fixed carbon atom. 

Note that any two conformers of the given alkane will have 
the same undirected graphical representation. This is because 
different conformers will retain their atomic bonding patterns, 
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regardless of what configuration they are in. Given this key 
insight, the BFS traversal order could provide a method for 
the generation of random conformers of the alkane. 
Specifically, a new conformer can be generated while 
reconstructing its graph by fixing each bond length in the 
given alkane and randomly varying the azimuthal and polar 
angles of each atom around its parent atom. The specific 
azimuthal angles are also set to have a lower bound of 0 
radians, and three upper bound test cases of 8/ߨ ,4/ߨ, and 16/ߨ radians. The corresponding polar angles for these three 
test cases are bounded above by 4/ߨ ,2/ߨ, and π/8 radians 
respectively. The process by which an atom is appended to its 
parent in random position within a given angle bound is 
shown below in Algorithm 2. 

 

Algorithm 2. Appending an atom around its parent 
Input: 
Angle bound, ߰ 
Parent atom coordinates in ground conformer, (ݔ୥୰୭୳୬ୢ, ,୥୰୭୳୬ୢݕ  (୥୰୭୳୬ୢݖ
Parent atom coordinates in new conformer, (ݔ୬ୣ୵, ,୬ୣ୵ݕ  (୬ୣ୵ݖ
Current atom coordinates in ground conformer: (ܽ, ܾ, ܿ) 

1 radius = ට൫ܽ െ ୥୰୭୳୬ୢ൯ଶݔ + ൫ܾ െ ୥୰୭୳୬ୢ൯ଶݕ + ൫ܿ െ  ୥୰୭୳୬ୢ൯ଶݖ

ߠ 2 = acos ቀ௖ି௭೒ೝ೚ೠ೙೏௥௔ௗ௜௨௦ ቁ 

3 ߶ = atan2(ܾ െ ,୥୰୭୳୬ୢݕ ܽ െ  (୥୰୭୳୬ୢݔ
ᇱߠ 4 ← random number between െటଶ 	and	 టଶ  

5 ߶ᇱ ← random number between െ߰	and	߰ 
୬ୣ୵ߠ 6 = max	(0,min(ߠ ,ᇱߠ	+  ((ߨ
7 ߶୬ୣ୵ = (߶ +	߶ᇱ +  ߨ2	%(ߨ2
8 Δݔ = ݎ ⋅ sin(ߠ୬ୣ୵) ⋅ cos(߶୬ୣ୵) 
9 Δݕ = ݎ ⋅ sin(ߠ୬ୣ୵) ⋅ cos	(߶୬ୣ୵) 
10 Δݖ = ݎ ⋅ cos(ߠ୬ୣ୵) 
x୬ୣ୵)	ܖܚܝܜ܍ܚ 11 + Δݔ, ୬ୣ୵ݕ + Δݕ, ୬ୣ୵ݖ + Δz) 

 

Once this appending procedure is complete for all atoms in 
the BFS traversal order, a random conformer of the given 
acyclic alkane has been created. This trial conformer 
generation process was repeated 1000 times, creating 1000 
possible configurations for the alkane at random azimuthal 
and polar angles between 0 radians and their respective angle 
bounds. The choice of 1000 iterations was subjective and was 
made in order to obtain a sufficient number of conformers to 
observe a trend in the molecular energy distribution without 
the requirement of extensive computational power and time. 
Additionally, it was chosen to vary polar and azimuthal 
angles to observe patterns in the energy of a conformer with 
varying atomic positions. Furthermore, the MP2 energies for 
each trial conformer were also recorded, forming a 
distribution of energies for the alkane at each angle bound.   

Four statistical parameters of each distribution, namely 
median, Interquartile Range (IQR), skewness, and kurtosis 
were then recorded. The process of creating the distribution 
and finding the statistical parameters was performed three 
times with the aforementioned angle bounds for the azimuthal 
and polar angles.  

With the three different distributions of conformers for the 
given acyclic alkane (one for each angle bound test case), a 
classical geometric clustering was used to compare different 
geometric configurations with each other. More specifically, 
the centroids for the CH, CH2, and CH3 groups (if present) in 
each conformer were calculated and it was observed how the 
positions of these centroids varied across the distribution of 
conformers. The collection of each centroid’s location across 
the entire distribution creates an observable cluster when 
overlayed on top of the ground conformer. The proposed 
process is shown in Fig. 1 and was implemented using Python 

3 and the following libraries: PySCF, NumPy, and 
Matplotlib [17–19]. Results were analyzed using the acyclic 
alkanes ethane (C2H6), propane (C3H8), and isobutane (C4H10). 
Note, however, that this process can work for acyclic alkanes 
of any given size provided that the computational resources 
are present.  

 

 
Fig. 1. Methodology: Monte Carlo with classical geometric clustering. 

IV.  RESULTS 

The following Figs. 2(a) and (b), show the ground 
conformer and median MP2 energy conformers for ethane 
created from the Monte Carlo trial conformer generation. 

 
(a) 

 
(b) 

Fig. 2. (a) Ethane ground conformer; (b) Ethane median energy conformer 
(Top Left: 8/ߨ  polar angle bound, Top Right: 4/ߨ  polar angle bound, 
Bottom: 2/ߨ polar angle bound). 
 

The following Figs. 3(a) and (b) show the ground 
conformer and median MP2 energy conformers for propane 
created from the Monte Carlo trial conformer generation. 
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(a) 

 
(b) 

Fig. 3. (a) Propane ground conformer; (b) Propane median energy conformer 
(Top Left: 8/ߨ  polar angle bound, Top Right: 4/ߨ  polar angle bound, 
Bottom: 2/ߨ polar angle bound). 

 

The following Figs. 4(a) and (b) show the ground 
conformer and median MP2 energy conformers for isobutane 
created from the Monte Carlo trial conformer generation. 

 
(a) 

 
(b) 

Fig. 4. (a) Isobutane ground conformer; (b) Isobutane median energy 
conformer (Top Left: 8/ߨ polar angle bound, Top Right: 4/ߨ polar angle 
bound, Bottom: 2/ߨ polar angle bound). 
 

From the Monte Carlo methodology, statistical parameters 
from the trial conformer MP2 energy distributions are shown 
in Table 1. Molecular energy is in units of Hartrees.  

 
Table 1. Distribution statistics for conformer MP2 energies 

Conformer Azimuthal Angle Bound PolarAngle Bound Median Energy (Hartrees) IQR Skewness Kurtosis 

Ethane 54.4983 6.4239 0.3182 79.1140− 2/ߨ 4/ߨ 

Ethane 0.4500 0.6810 0.0880 79.4074− 4/ߨ 8/ߨ 

Ethane 0.2458 0.6631 0.0222 79.5061− 8/ߨ 16/ߨ 

Propane 595.5804 22.5781 0.8028 117.7483− 2/ߨ 4/ߨ 

Propane 40.6724 4.1881 0.1457 118.4544− 4/ߨ 8/ߨ 

Propane 0.5383 0.7257 0.0348 118.6553− 8/ߨ 16/ߨ 

Isobutane 74.6403 7.6761 2.5213 155.9988− 2/ߨ 4/ߨ 

Isobutane 127.9822 9.1102 0.3948 157.4520− 4/ߨ 8/ߨ 

Isobutane 8.4754 2.2178 0.0594 157.8050− 8/ߨ 16/ߨ 

 

Next, the classical geometric clustering of centroids from 
CH, CH2 and CH3 groups for ethane, propane, and isobutane 
are shown in Figs. 5–7. Note that ethane does not contain a 
CH or CH2 group and propane does not contain a CH group. 
In all the following figures, purple points are for CH group 
clusters, orange points are used for CH2 group clusters, and 
green points are used for CH3 group clusters. 

Below in Figs. 8–10 are box plots showcasing the different 
distributions of energies for ethane, propane, and isobutane 
under different angle bounds. Note that the box plots (in units 
of Hartrees) are not all the same scale for visual purposes. 

We start by observing four statistical parameters of 
conformer energy distributions created by the Monte Carlo 
methodology, as reported in Table 1. It should be observed 
that the median MP2 energy increases in magnitude from 
larger to narrower angle bounds (from π/2 to π/8). 
Furthermore, narrower bounds such as π/4 and π/8 have much 

smaller interquartile ranges than the π/2 bounds. 
Note that all distributions have a positive skew which 

decreases as the angle bound changes from π/2 to π/8. This 
positive skew indicates that the Monte Carlo method is 
producing outlier conformers that are physically improbable. 
Examples of such outliers can be seen in Figs. 8–10. The 
positive kurtosis values and leptokurtic behavior of each 
distribution indicates that outliers have a high deviation from 
the median. This positive kurtosis allows for an easier 
separation of physically improbable trial conformers. 
Additionally, it is evident from the roughly symmetric box 
plots in Figs. 8–10 that as the angle bounds approaches lower 
values (i.e. π/8), the distribution of energies tends toward a 
normal model. As the angle bound increases to higher values 
such as π/8 and π/4, it can be seen that a larger number of 
outliers are generated, thus skewing the distribution toward 
higher energy values. 
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Fig. 5. Ethane centroid clusters (Top Left: 8/ߨ polar angle bound, Top 

Right: 4/ߨ polar angle bound, Bottom: 2/ߨ polar angle bound). 
 

 
Fig. 6. Propane centroid clusters (Top Left: 8/ߨ polar angle bound, Top 

Right: 4/ߨ polar angle bound, Bottom: 2/ߨ polar angle bound). 
 

 
Fig. 7. Isobutane centroid clusters (Top Left: 8/ߨ polar angle bound, Top 

Right: 4/ߨ polar angle bound, Bottom: 2/ߨ polar angle bound). 
 

It should also be observed that the CH2 group (orange) in 
propane has an electron cloud that gets noticeably 
compressed between the surrounding CH3 groups (green). 
This can be seen by the decreased width of the green centroid 
cluster compared to the orange and purple clusters.  

 

 
Fig. 8. Ethane MP2 energy distribution box plots (From left to right: 8/ߨ 

polar angle bound, 4/ߨ polar angle bound, 2/ߨ polar angle bound). 

 

 
Fig. 9. Propane MP2 energy distribution box plots (From left to right: 2/ߨ 

polar angle bound, 4/ߨ polar angle bound, 8/ߨ polar angle bound). 

 

 
Fig. 10. Isobutane MP2 energy distribution box plots (From left to right: 2/ߨ polar angle bound, 4/ߨ polar angle bound, 8/ߨ polar angle bound). 

V.   ANALYSIS AND DISCUSSION 

As seen in the results, when transitioning to higher angle 
bounds the number of outliers tends to increase. This likely 
results from the overlapping of electron clouds between the 
CH, CH2 and CH3 groups of the given molecule. As the angle 
bounds increase, the range for the random azimuthal and 
polar angles also increases, meaning bonds gain more 
rotational freedom. With larger amounts of rotational 
freedom, the electron clouds of the structural units have a 
higher chance of overlapping, leading to higher electron-
electron repulsion energies. This is reflected in the form of 
more positive-valued Hartree energies which are seen as 
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outliers in the distribution as seen in Figs. 8–10. Conversely, 
when the angle bounds are decreased, the structural units lose 
their rotational freedom and possess fewer electron-electron 
repulsions. This is observed as more negative-valued Hartree 
energies, resulting in an increase in the magnitude of the 
median energies (see Table 1).  

Results from the classical geometric clustering algorithm 
around the CH, CH2 and CH3 groups revealed trends in the 
overall geometric tendency for ethane, propane, and 
isobutane (shown in Figs. 5–7). The similarity of new trial 
conformers with the ground conformer indicates that ethane, 
propane, and isobutane lack a wide range of stable 
conformers. This implies that the structure of each conformer 
is largely dictated by the placement of hydrogen atoms 
around each CH, CH2, and CH3 group as the underlying 
carbon atoms remain largely fixed. In ethane, as seen in Fig. 5, 
the lack of centroids between the top and bottom CH3 centroid 
clusters suggests that the most stable conformers have 
hydrogen atoms that tend to stay as far apart from each other 
as possible. A similar trend is noted in propane, as seen in 
Fig. 6 and isobutane in Fig. 7.  

VI. LIMITATIONS AND FUTURE WORK 

Currently, this research presents an analysis of the energies 
of conformational isomers as well as a novel method for their 
generation and evaluation. However, while this method 
works for acyclic alkanes, larger molecules, especially those 
that are cyclic are generally much more computationally 
expensive and difficult to work with. This initial 
computational issue stems from the Monte Carlo 
methodology, which requires the Møller-Plesset SCF 
calculations to be run a substantial number of times. The latter 
issue concerning the difficulty to work with cyclic molecules 
is a direct result of the proposed BFS method, since it is 
unable to work with cyclic graphs.  As a result, the 
researchers of this paper have three primary aims for future 
work: 

1) the extension of the current approach to observe 
conformers of cyclic structures such as benzene; 

2) energy analysis of conformers using alternate 
methods such as embedding molecules in a force field 
to vary bond lengths and bond orders; 

3) the implementation of parallel computing and a 
machine learning model to optimize SCF calculations.  

The researchers hope to use aim 1 to enhance the utility of 
the Monte Carlo-based analysis and aim 2 to provide new 
methods to determine molecular energies. The purpose of aim 
3 is to directly address the limitation of computational power, 
which was initially observed through evaluation times when 
testing ethane, propane, and isobutane, as seen in Table 2.  
 

Table 2. Evaluation time for each conformer 

Molecule Conformer Evaluation Time (minutes) 

Ethane 13.99 

Propane 18.80 

Isobutane 29.50 

 

When implementing the proposed methodology, the 
evaluation time of propane’s Hamiltonian was measured to 

be 1.34 times the evaluation time for ethane. Isobutane also 
followed a similar trend with a Hamiltonian evaluation time 
1.56 times that of propane.  

Given this polynomial increase in evaluation times, as 
larger molecules are tested, finding alternate solutions to the 
ab initio methods is pertinent. This is where aim 3 could prove 
to be considerably helpful. First, running ab initio methods, 
specifically Hartree-Fock and Density Functional Theory on 
a parallel computing system has already been shown to 
significantly speed up the SCF process [20]. Extending this 
method to run higher order ab initio methods, such as MP2, 
could prove to be helpful in reducing evaluation times as 
larger molecules begin to get tested.  

Furthermore, leveraging the use of a machine learning 
model could also prove to be vital in optimizing SCF 
calculations. Specifically, machine learning could be 
beneficial for MP2 by generating better wavefunction 
corrections and reducing the number of iteration steps when 
converging to a Hamiltonian. As mentioned in the 
background, machine learning has already been implemented 
in the field of molecular dynamics. Particular instances 
include the Fast Search and Find of Density Peaks clustering 
algorithm along with deep learning prediction models. 
Therefore, implementing machine learning for the generation 
and evaluation of conformational isomers could prove to be a 
valuable step forward in enhancing this research.  

VII.  CONCLUSIONS 

In conclusion, a novel method for analyzing the 
conformers of acyclic alkanes was successfully implemented 
using the Møller-Plesset Perturbation theory, Monte Carlo 
methodology, and classical geometric clustering algorithm. 
Conformers were successfully generated and evaluated for 
ethane, propane, and isobutane. This can potentially be 
generalized for any acyclic molecule provided the necessary 
computational power is present. Our results consist of a 
substantial number of stable conformers, where their 
structure and median energy were influenced by the position 
of the CH, CH2 and CH3 groups. By observing the kurtosis 
values and leptokurtic behavior of each distribution, the 
proposed novel method can also identify outliers, further 
increasing the accuracy of conformer analysis. Future 
advancements in computational efficiency and the expansion 
of our approach to larger, more complex molecular systems 
can also help improve the scope of our study. 
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